Calculate the case incidence rate of a sports-related health problem (e.g. disease, injury) in a cohort.
Usage
calc_incidence(
injd,
by = NULL,
overall = TRUE,
method = c("poisson", "negbin", "zinfpois", "zinfnb"),
se = TRUE,
conf_level = 0.95,
scale = TRUE,
quiet = FALSE
)
Arguments
- injd
injd
S3 object (seeprepare_all()
).- by
Character specifying the name of the column according to which compute summary statistics. It should refer to a (categorical) variable that describes a grouping factor (e.g. "type of case or injury", "injury location", "sports club"). Optional, defaults to
NULL
.- overall
Logical, whether to calculate overall (for all the cohort) or athlete-wise summary statistic (i.e. number of cases per cohort of per athlete). Defaults to
TRUE
.- method
Method to estimate the incidence (burden) rate. One of "poisson", "negbin", "zinfpois" or "zinfnb"; that stand for Poisson method, negative binomial method, zero-inflated Poisson and zero-inflated negative binomial.
- se
Logical, whether to calculate the confidence interval related to the rate.
- conf_level
Confidence level (defaults to 0.95).
- scale
Logical, whether to transform the incidence and burden rates output according to the unit of exposure (defaults to
TRUE
).- quiet
Logical, whether or not to silence the warning messages (defaults to
FALSE
).
Value
The case incidence rate. Either a numeric value (if overall
TRUE
) or a data frame indicating the case incidence rate per
athlete.
References
Bahr R., Clarsen B., & Ekstrand J. (2018). Why we should focus on the burden of injuries and illnesses, not just their incidence. British Journal of Sports Medicine, 52(16), 1018–1021. https://doi.org/10.1136/bjsports-2017-098160
Waldén M., Mountjoy M., McCall A., Serner A., Massey A., Tol J. L., ... & Andersen T. E. (2023). Football-specific extension of the IOC consensus statement: methods for recording and reporting of epidemiological data on injury and illness in sport 2020. British journal of sports medicine.
Examples
calc_incidence(injd)
#> Warning:
#> Exposure time unit is matches_minutes
#> Case incidence and case burden are calculated per 100 athlete-matches of exposure (i.e. 90 minutes times 100)
#>
#> # A tibble: 1 × 6
#> totalexpo ncases incidence incidence_sd incidence_lower incidence_upper
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 74690 82 9.88 1.09 7.74 12.0
calc_incidence(injd, overall = FALSE)
#> Warning:
#> Exposure time unit is matches_minutes
#> Case incidence and case burden are calculated per 100 athlete-matches of exposure (i.e. 90 minutes times 100)
#>
#> # A tibble: 28 × 7
#> person_id totalexpo ncases incidence incidence_sd incidence_lower
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 adam-lallana 700 6 77.1 31.5 15.4
#> 2 alberto-moreno 1264 1 7.12 7.12 -6.84
#> 3 alex-oxlade-chamberl… 1483 1 6.07 6.07 -5.83
#> 4 alisson 3420 0 0 0 0
#> 5 andrew-robertson 5162 5 8.72 3.90 1.08
#> 6 daniel-sturridge 927 3 29.1 16.8 -3.83
#> 7 danny-ings 265 0 0 0 0
#> 8 dejan-lovren 3109 6 17.4 7.09 3.47
#> 9 divock-origi 366 1 24.6 24.6 -23.6
#> 10 dominic-solanke 581 0 0 0 0
#> # ℹ 18 more rows
#> # ℹ 1 more variable: incidence_upper <dbl>
calc_incidence(injd, by = "injury_type")
#> Warning:
#> Exposure time unit is matches_minutes
#> Case incidence and case burden are calculated per 100 athlete-matches of exposure (i.e. 90 minutes times 100)
#>
#> # A tibble: 5 × 7
#> injury_type totalexpo ncases incidence incidence_sd incidence_lower
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Bone 74690 11 1.33 0.400 0.542
#> 2 Concussion 74690 16 1.93 0.482 0.983
#> 3 Ligament 74690 9 1.08 0.361 0.376
#> 4 Muscle 74690 25 3.01 0.602 1.83
#> 5 Unknown 74690 21 2.53 0.552 1.45
#> # ℹ 1 more variable: incidence_upper <dbl>
calc_incidence(injd, by = "injury_type", scale = FALSE)
#> # A tibble: 5 × 7
#> injury_type totalexpo ncases incidence incidence_sd incidence_lower
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Bone 74690 11 0.000147 0.0000444 0.0000602
#> 2 Concussion 74690 16 0.000214 0.0000536 0.000109
#> 3 Ligament 74690 9 0.000120 0.0000402 0.0000418
#> 4 Muscle 74690 25 0.000335 0.0000669 0.000204
#> 5 Unknown 74690 21 0.000281 0.0000614 0.000161
#> # ℹ 1 more variable: incidence_upper <dbl>